2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 29, 2019

Selective And Efficient Electrochemical Production Of Neat Formic Acid From CO₂ Using Novel Platinum Group Metals-free Catalysts

Dr. Syed <u>Mubeen</u> Jawahar Hussaini (PI)

Assistant Professor

Department of Chemical and Biochemical Engineering
University of Iowa, Iowa City

Project ID: DE-FE0031704

Overview

Timeline:

• Project start: 01/29/2019

• Project end: 01/28/2022

Budget:

• Total Project Funding: \$931,662

• Total DOE Share: \$732,109

• Total Cost Share: \$199,553 (21.42%)

Project Lead:

University of Iowa, Iowa City

Project Partners:

- University of Michigan, Ann Arbor
- University of California, Santa Barbara

Project Objective:

Establish the technical and economic feasibility of a novel **biphasic-electrolyzer**-based CO₂ conversion process that uses **Platinum group metal (PGM)-free catalysts** for sustainable production of "neat" formic acid.

Technical Barriers To be Addressed

Current Opinion in Chemical Engineering 2013, 2:191-199

ChemSusChem 2011, 4, 1301 – 1310

- Low energy efficiency and Low product generation rates
- Poor selectivity and durability of catalysts for CO₂ conversion
- Low product purity

Formic Acid from CO₂ – Proposed Technology

- Use of supercritical CO_2 as feedstock for CO_2 reduction \rightarrow enhances product selectivity
- The biphasic electrolyzer design allows generation of neat formic acid

Project Tasks and Approach

1. Novel, low cost, PGM-free metal-alloy catalysts that are selective for formic acid production

4. Lab scale (5 cm²) demonstration of CO₂ to HCOOH conversion and LCA/TEA analysis.

A preliminary 1cm² device design.

2. In-operando characterization of catalyst-electrolyte interfaces to discern corrosion mechanism

Raman electrochemical cell. (a) Exploded view; (b) assembled view; and (c) section view.

3. Optimize electrolyte formulations to improve overall energy efficiency.

Project Schedule

Acknowledgement

- □ DOE/NETL Project Officer(s) **Dr. Sai Gollakota (Current) and Dr. Bruce** W. Lani (Past)
- □ DOE/NETL Contract Specialist/Award Administrator Mr. Nicholas Anderson
- ☐ Funding support by US DOE/NETL through Award No DE-FE0031704

Thank You!